"Rebuild Graph" applies N / k settings. Reseed changes U/V only.
Adaptive Link CA — Hybrid Adaptive Links
score —
⏱ Timing
0.075
Time step
22
Sampling count
3.0
Small sampling radius
12.0
Large sampling radius
🎯 Species A
0.52
0.36
0.12
0.18
1.0
0.7
0.04
0.10
🎯 Species B
0.48
0.40
0.11
0.17
0.9
0.7
0.04
0.10
🌊 Phase & Flow
1.5
0.65
0.18
0.8
0.35
0.35
0.35
Procedural jitter applied to warp and link dynamics
🔗 Adaptive Links
9000
0.08
0.02
0.15
Activity texture decay
2.0
Activity texture scale
Tensor Morph CA — Structure Tensor Flow
⏱ Timing & Warp
0.035
Time step for TensorMorph update
0.004
Amplitude of domain warp (advects both u and orientation)
2.5
Spatial frequency of warp noise
2.0
Global simulation speed multiplier
📐 Tensor & Anisotropy
1.35
How strongly θ aligns to the structure tensor orientation
0.85
Strength of anisotropic diffusion along θ vs across θ
0.70
Multi-scale feed term coupling small/medium/large structure
🌊 Decay & Phase
0.18
Relaxation of u back toward mid-level
0.30
Angular diffusion / smoothing of θ field
0.30
Density-dependent rotation of orientation field (creates spirals)
✨ Noise & Render
0.030
Stochastic kicks on u (keeps things from freezing)
0.020
Random angular jitter, seeds new filaments
1.00
Rendering gain on u (brightness / contrast of filaments)
🧠 Structure Kernels
4
Radius of small structural kernel (integers)
2.5
Sigma (sharpness) of small kernel
8
Radius of medium structural kernel
5.5
Sigma of medium kernel
14
Radius of large structural kernel
10.0
Sigma of large kernel
dt / warp tune the global flow; align / aniso shape filament webs; noise keeps them alive.
NLAT — Living Lattice Ecotone
score —
⏱ Substrate Flux
0.032
0.045
0.028
0.12
0.55
🌬 Flow & Membrane
0.85
0.42
0.35
0.6
0.18
0.28
0.65
0.8
🧬 Colony Graph
0.5
0.62
0.3
0.22
0.16
0.55
0.018
0.055
0.35
🎨 Rendering
0.5
1.35
1.02
2.2
Hyperbolic Fractional CA — Hyperbolic Mycelial Foam Automaton
score —
Organic tendrils emerge from a density + nutrient field living on the Poincaré disk. Orientation hues track vine direction; tweak nutrients and orientation memory to sculpt the growth.
⏱ Timing & Geometry
0.028
0.82
Hyperbolic curvature intensity
🌀 Warp & Swirl
0.0045
3.1
0.38
Hyperbolic tangential drift
🧭 Orientation Flow
0.24
0.55
0.32
0.85
🌱 Nutrient Ecology
0.42
0.60
0.16
0.22
0.95
0.75
0.012
🔭 Kernel Footprints
4
14
8
20
🎨 Rendering
1.12
Hyperbolic Manifold Automaton (HMA)
score —
State evolves on the Poincaré disk using geodesic ring sampling via Möbius (gyro) addition.
Two species (A, B) interact through hyperbolic geodesic neighborhoods with memory and orientation coupling.
[/] changes dt; -/+ changes mobiusAmp; r reseeds.
⏱ Timing
0.035
Time step
🌐 Hyperbolic Rings
0.18
Inner ring radius (hyperbolic units)
0.42
Middle ring radius
0.78
Outer ring radius
1
Angle sampling skip (1=all, 2=half, 3=third)
⚛️ Species A Reaction
1.00
Ring 1 weight
0.65
Ring 2 weight
0.40
Ring 3 weight
0.50
Curvature term weight
⚛️ Species B Reaction
0.80
Ring 1 weight
0.55
Ring 2 weight
0.35
Ring 3 weight
0.45
Curvature term weight
📊 Species A Gaussian Response
0.55
Ring 1 response center
0.12
Ring 1 response width
0.45
Ring 2 response center
0.18
Ring 2 response width
📊 Species B Gaussian Response
0.50
Ring 1 response center
0.11
Ring 1 response width
0.40
Ring 2 response center
0.17
Ring 2 response width
🌊 Diffusion & Coupling
0.14
Species A diffusion
0.16
Species B diffusion
0.30
A→B coupling
0.24
B→A coupling
0.22
Species A decay
0.18
Species B decay
🧠 Memory & Orientation
0.07
Memory fractional order
0.35
Memory gain for A
-0.22
Memory gain for B
0.35
Orientation coupling gain
🌀 Möbius & Curvature
0.045
Möbius transform amplitude
0.12
Möbius transform speed
0.20
Curvature flow feedback
✨ Display
0.9
Render brightness gain
Gauge-Flux Dirac CA
score —
Complex 2-spinor with gauge-covariant Dirac dynamics, fractional diffusion, nonlinear phase pressure, and chiral coupling to synthetic magnetic flux. [/] changes dt; -/= changes Aamp.
⏱ Time & Mass
0.030
Time step
0.85
Dirac wave speed
0.22
σz mass term
🌀 Nonlinearity
0.90
Phase pressure strength
0.42
Phase pressure target
0.18
Amplitude damping
🌊 Fractional DoG
0.65
Overall strength
0.85
Small scale weight
0.35
Medium scale weight
0.18
Large scale weight
5
Small radius
2.5
Small sigma
11
Medium radius
6.0
Medium sigma
17
Large radius
11.0
Large sigma
⚡ Gauge Field
0.90
Gauge field magnitude
3.2
Spatial frequency
0.22
Temporal rate
1.0
Phase scaling for link exponent
0.85
Chiral flux coupling
0.0025
Stochastic micro-jitter
0.92
Render brightness gain
ETHOS-CA — Entropic Transport + Hodge Swirl
score —
Transport-first CA with Schrödinger-bridge-style entropic transport (variable-kernel Gaussian blurs) and Hodge swirl (divergence-free flow from phase field). Semi-Lagrangian advection through dynamically warped metric. [/] changes dt; -/+ changes warpAmp; r reseeds.
⏱ Timing & Warp
0.045
Time step
0.010
Warp amplitude
2.8
Warp frequency
0.25
Velocity jitter strength
1.7
Velocity jitter frequency
🌊 Entropic Transport
0.95
Velocity weight for ∇(log Kσ(A) − log A)
0.70
Weight for curl from Kσ (rot90 ∇K)
0.001
Log-regularizer
0.45
Shift of B→σ mapping
2.1
Steepness of mixing curve
🌀 Hodge Swirl
1.05
Velocity weight for rot90(∇θ)
0.20
Phase diffusion
0.35
θ drive from A−B
⚗️ Diffusion & Reaction
0.12
Diffusion coefficient for A
0.10
Diffusion coefficient for B
0.18
Decay rate for A
0.16
Decay rate for B
0.22
Cross-species coupling strength
🎨 Rendering
0.95
Render brightness gain
0.22
Palette phase roll
0.95
Contrast
🔍 Multi-Scale Kernels
5
Small blur radius (pixels)
2.4
Small blur sigma
10
Medium blur radius (pixels)
5.5
Medium blur sigma
16
Large blur radius (pixels)
11.0
Large blur sigma
Schrödinger Bridge Morphogenesis — Entropic Transport + Pseudo‑Quantum
score —
⏱ Transport & Warp
0.035
Integrator step
0.004
Spatial distortion amplitude
3.0
Spatial distortion frequency
🚦 Bridge & Couplings
0.70
Log‑scale adaptation (s gain)
0.25
Damping toward √ρ phase amplitude
0.55
Weight of |ψ|² in target T
0.02
Stochastic mass injection (prevents death)
🌀 Pseudo‑Quantum
0.90
Cubic nonlinearity in ψ
0.35
Potential coupling ~ (s − ρ)
🎯 Morphology Target
0.12
0.22
✨ Noise & Display
0.004
4.0
0.95
Tone/contrast emphasis
🌊 Multi-Scale Blur
5
Small blur radius
3.0
Small blur sigma
11
Medium blur radius
8.0
Medium blur sigma
17
Large blur radius
14.0
Large blur sigma
Keys: [ / ] = dt, - / + = warp, r = reseed
HodgeFlow CA — Exterior-Calculus Cellular Automaton
score —
Time & Warp
Scalar u (reaction–diffusion)
Vorticity ω (2-form)
Vector field A
Render
Brush
Keys: [ / ] = dt, - / + = warpAmp, r = reseed
Floquet Bloom Conductor
score —
Braided tendrils ride a curl stream, sip from a strobing resource bath, and shed light as their Floquet phase precesses. [/] adjusts dt, r reseeds.
⏱ Timing
0.028
🌊 Stream & Advection
0.85
0.55
0.55
0.58
🌺 Floquet Pump & Bloom
0.92
0.65
0.38
0.85
0.55
🌱 Resource Ecology
0.32
0.42
0.18
🧭 Orientation Field
0.58
0.36
0.18
💡 Noise & Render
0.0035
1.6
1.10
📐 Blur Scales
6
3.0
11
7.0
19
12.0
Wasserstein Transport CA
score —
Transport-driven morphogenesis using entropic optimal transport (Sinkhorn-like) with local reaction-resource dynamics and phase-guided advection. Mass moves coherently along self-organized velocity fields. [/] changes dt; -/= changes alphaT; r reseeds.
⏱ Time & Transport
0.055
Time step
0.48
Blend between old rho and transported rho
0.12
Entropic regularization epsilon for Sinkhorn
🌀 OT Kernel
15
OT kernel radius (texels)
10.5
OT kernel sigma
🌊 Advection
0.85
Phase-guided advection strength
0.70
Chemotactic advection from ∇resource
0.0028
Procedural warp amplitude
3.7
Procedural warp frequency
⚗️ Reaction & Resource
0.62
Rho growth fueled by resource
0.15
Rho decay rate
0.16
Resource diffusion
6
Resource diffusion blur radius
3.5
Resource diffusion blur sigma
0.20
Base resource supply (favor low rho regions)
0.06
Resource decay rate
0.38
Resource consumption by rho
🧭 Orientation & Phase
0.12
Base phase drift
0.25
Coupling strength to flow geometry
🎨 Noise & Render
0.006
Weak additive jitter in reaction
0.95
Tone curve in renderer
Foliated Shear CA — Foliated Shear-Flow Attractor
score —
Anisotropic foliated shear-flow attractor on a 4-channel field (a, b, φ, s) with phase-driven advection and multi-sheet sheaf dynamics. Features anisotropic neighborhood coupling, semi-Lagrangian shear advection, nonlinear sheaf reactions, and continuous sheet folding. [/] changes dt; 1/2 changes anisotropy; r reseeds.
Injects noise specifically into high-curl (vortical) regions
1.1
Render brightness gain
Spin Glass CA — Landau–Lifshitz Spin Texture
score —
Landau–Lifshitz–Gilbert spin-glass cellular automaton: each pixel carries a 3D spin on S² plus an activity scalar. Dynamics are a discretized LLG flow in a quenched random-anisotropy medium with stochastic forcing, producing spin waves, vortices, domain walls, glassy pinning, and activity bursts. [/] changes dt; r reseeds.
⏱ Time & Damping
0.045
Time step for Landau–Lifshitz integration
0.900
Exchange coupling — favors local spin alignment
0.350
DMI strength — favors chiral twisting (Skyrmions)
0.180
Gilbert damping — relaxes spins into local fields
🧊 Random Anisotropy & Noise
0.700
Random anisotropy strength — pins spins to local easy axes
0.035
Stochastic forcing — injects spin waves & defects
🔥 Activity Channel
0.850
How strongly activity amplifies local fields
0.600
Decay of activity when fields are weak
0.950
Activity source driven by |H| — where spin dynamics are intense
0.00
Activity melts magnetic order (reduces J locally)
0.25
Advection strength by activity gradient
0.65
Activity threshold for melting
🌀 Warp & Rendering
0.0025
Amplitude of spin-space warp — slowly shuffles neighborhoods
3.0
Spatial frequency of the warp field
1.00
Edge contrast gain in rendering
Use the same brush as other modes: drag to twist spins, Shift+drag to twist the other way.
Phase–Shear Spectrum CA — Kuramoto/XY Phase Alignment with Spin
score —
Radically different dynamics: state = (u, cosφ, sinφ, ω) where u is density/excitation, φ is oscillator phase on S¹, and ω is signed spin/vorticity. Multi-scale phase alignment (Kuramoto/XY-style) drives density growth/suppression based on phase coherence and spin. Spin is driven by local vorticity surrogate. Time-varying pseudo-random shear/warp in UV-space. [/] changes dt; -/+ changes warpAmp; r reseeds.
⏱ Time & Warp
0.045
Time step for integration
0.016
Amplitude of pseudo-random UV-space shear/warp
3.2
Spatial frequency of warp field
🌀 Phase Alignment
1.25
Strength of local phase alignment to multi-scale mean
0.075
Random angular jitter added to phase alignment
💧 Density Dynamics
1.10
Growth coefficient for density field
0.45
Decay coefficient for density field
0.55
Diffusion-like term via blurred u
0.080
Bias to avoid trivial extinction
✨ Coherence & Spin Coupling
1.30
Boost from phase coherence amplitude
0.80
How much spin biases density growth
1.40
Maximum magnitude for spin field
🌊 Spin Dynamics
0.50
Decay rate for spin field
0.90
Weight of curl(u) into spin source term
0.20
Feedback: spin rotates local phase
📐 Multi-Scale Weights
1.00
Weight for small-scale blurred phase
0.90
Weight for medium-scale blurred phase
0.50
Weight for large-scale blurred phase
🎨 Rendering
1.00
Rendering brightness gain
Mouse interaction: drag to inject density and phase twist perturbations. Shift+drag subtracts density.
Orbital Mobius CA — Orbital Mobius Automaton (OMA)
score —
⏱ Timing
0.036
Time step
🔮 Orbital Sampler
5
Number of concentric orbital rings
14
Directional spokes sampled per orbit
0.74
Pull toward orbital mean
0.82
Orbit chirality to spin strength
0.62
Bias toward gradient-aligned spokes
🌀 Möbius Dynamics
0.075
Linear damping of the conformal field
0.32
Baseline rotation even without chirality
0.18
Base SU(1,1) center amplitude
0.55
How strongly |μ| modulates the Möbius center
0.34
Global orientation drift of orbits
🌊 Warp Field
0.0058
Warp amplitude
2.9
Warp spatial scale
0.33
Warp temporal speed
🌱 Ecology
0.34
Rate at which calm zones accumulate fuel
0.18
Fuel leakage back into the field
0.22
Smoothing of fuel between neighboring pixels
0.45
How fast swirl memories respond to new motion
0.42
Strength of the hyperbolic soft clamp on |z|
0.00
Chaotic spiral twisting of the Möbius center
0.00
Fuel advection along field lines (anisotropic transport)
🎲 Noise
0.009
Structured noise amplitude
🎨 Rendering
0.97
Gamma correction
1.02
Render gain
Optimizer idle
Tap Run to start CMA-ES
Generation0 / 0
Evaluated0
Best Score—
Elapsed0s
Saved highlights
No results yet.
Mode
Field CA
—
Click+Drag to perturb • Shift subtract • Scroll brush size
Documentation HUD
Drag anywhere on this bar to move
No sections match that filter--clear search or pick another group.